一、电力系统的构成
(一)电力系统
由发电、变电、输电、配电、用电等设备和相应的辅助系统,按规定的技术、经济要
求组成的一个统一系统,即称为电力系统。电力系统还包括为保证其安全可靠运行的继电
保护和安全自动装置,调度自动化和通信等辅助系统(又称二次系统)。电力系统的根本
任务是向用户提供充足、可靠、合格、价廉的电能。
(二)电力网
电力系统中输送、变换和分配电能的那一部分称为电力网。电力网包括输电网和配电
网。
输电网主要作用是将远离负荷中心的发电厂所发出的电能经过变压器升高电压并通过
高压输电线输送到邻近负荷中心的枢纽变电所。同时,输电线还有联络相邻电力系统和联
系相邻枢纽变电所的作用。
配电网是将电能从枢纽变电所直接分配到用户去的电力网。一般又将配电网分为高
压、中压、低压配电网。在中国,高压配电网电压一般为和,中压配电网电
压一般为,低压配电网电压一般为三相四线制的
二、电力系统运行的特点
一是经济总量大。目前,我国电力行业的资产规模已超过2万多亿,占整个国有资产总量的四分之一,电力生产直接影响着国民经济的健康发展。
二是同时性,电能不能大量存储,各环节组成的统一整体不可分割,过渡过程非常迅速,瞬间生产的电力必须等于瞬间取用的电力,所以电力生产的的发电、输电、配电到用户的每一环节都非常重要。
三是集中性,电力生产是高度集中、统一的,无论多少个发电厂、供电公司,电网必须统一调度、统一管理标准,统一管理办法;安全生产,组织纪律,职业品德等都有严格的要求。
四是适用性,电力行业的服务对象是全方位的,涉及到全社会所有人群,电能质量、电价水平与广大电力用户的利益密切相关。
五是先行性,国民经济发展电力必须先行。
三、电力系统的额定电压
电网电压是有等级的,电网的额定电压等级是根据国民经济发展的需要、技术经济的合理性以及电气设备的制造水平等因素,经全面分析论证,由国家统一制定和颁布的。
目前我国最高交流电压等级是1000KV,是长治至荆门线,于2008年12月30日投入运行的;我国最高直流电压等级是正负500KV,有葛洲坝---上海南桥线、天生桥---广州线、贵州---广东线、三峡---广东线。
目前我国常用的电压等有:220V、380V、6kV、10kV、35kV、110kV、220kV、330kV、500kV,1000KV。其中,10KV及以下的电压线路称配电线路,35KV及以上电压线路称为送电线路。同时还规定1KV以上的电压为“高电压”,1KV以下的电压为“低电压”,安全电压为36V及以下电压。
用电设备的额定电压和电网的额定电压一致。实际上,由于电网中有电压损失,致使各点实际电压偏离额定值,为了保证用电设备的良好运行,显然,用电设备应具有比电网电压允许偏差更宽的正常工作电压范围。发电机的额定电压一般比同级电网额定电压要高出5%,用于补偿电网上的电压损失。
变压器的额定电压分为一次和二次绕组。对于一次绕组,当变压器接于电网末端时,性质上等同于电网上的一个负荷(如工厂降压变压器),故其额定电压与电网一致,当变压器接于发电机引出端时(如发电厂升压变压器),则其额定电压应与发电机额定电压相同。对于二次绕组,考虑到变压器承载时自身电压损失(按5%计),变压器二次绕组额定电压应比电网额定电压高5%,当二次侧输电距离较长时,还应考虑到线路电压损失(按5%计),此时,二次绕组额定电压应比电网额定电压高10%。
四、电力系统的中性点运行方式
电力系统的运行方式从广义上说就是指电气设备运行的方法和形式。例如电网可以分为开环和闭环不同的运行方式,断路器可以分为远控和近控,继电保护可以投信号和投跳闸。电力系统的运行方式中的中性点的运行方式,星型连接的发电机和变压器的中性点的运行方式中性点的运行方式一般分为两大类:一类是不接地电流系统,一类是小接地电流系统。
电力系统的中性点直接接地或经过低阻抗接地的系统称为大接地电流系,电力系统的中性点绝缘或经过消弧线圈以及其他高阻抗而接地的系统是小接地电流系统。
电力系统年度运行方式的编制从负荷预侧和有功功率、无功功率平衡开始,然后进行短路容量、潮流分布、稳定、经济调度、内部过电压、可靠性分析等专题计算。
五、供电质量
决定用户供电质量的指标为电压、频率和可靠性。
1.电压
理想的供电电压应该是幅值恒为额定值的三相对称正弦电压。由于供电系统存在阻抗、用电负荷的变化和用电负荷的性质等因素,实际供电电压无论是在幅值上、波形上还是三相对称性上都与理想电压之间存在着偏差。
(1)电压偏差:电压偏差是指电网实际电压与额定电压之差,实际电压偏高或偏低对用电设备的良好运行都有影响。
国家标准规定电压偏差允许值为:
a、35千伏及以上电压供电的,电压正负偏差的绝对值之和不超过额定电压的±10%;
b、10千伏及以下三相供电的,电压允许偏差为额定电压的±7%。
c、220伏单相供电的,电压允许偏差为额定电压的+7%、-10%。
计算公式
电压偏差(%)=(实际电压一额定电压)/额定电压,最后乘以100%
(2)电压波动和闪变:在某一时段内,电压急剧变化偏离额定值的现象称为电压波动。当电弧炉等大容量冲击性负荷运行时,剧烈变化的负荷电流将引起线路压降的变化,从而导致电网发生电压波动。由电压波动引起的灯光闪烁,光通量急剧波动,对人眼脑的刺激现象称为电压闪变。
国家标准规定对电压波动的允许值为:
10KV及以下为2.5%
35至110KV为2%
220KV及以上为1.6%
(3)高次谐波:高次谐波的产生,是非线性电气设备接到电网中投入运行,使电网电压、电流波形发生不同程度畸变,偏离了正弦波。
高次谐波除电力系统自身背景谐波外,主要是用户方面的大功率变流设备、电弧炉等非线性用电设备所引起。高次谐波的存在降导致供电系统能耗增大、电气设备绝缘老化加快,并且干扰自动化装置和通信设施的正常工作。
(4)三相不对称:三相电压不对称指三个相电压的幅值和相位关系上存在偏差。三相不对称主要由系统运行参数不对称、三相用电负荷不对称等因素引起。供电系统的不对称运行,对用电设备及供配电系统都有危害,低压系统的不对称运行还会导致中性点偏移,从而危及人身和设备安全。
电力系统公共连接点正常运行方式下不平衡度国家规定的允许值为2%,短时不得超过4%,单个用户不得超过1.3%
2.供电频率允许偏差
电网中发电机发出的正弦交流电每秒中交变的次数称为频率,我国规定的标准频率50HZ.
我国国标规定,电力系统正常频率偏差允许值为±0.1Hz,实际执行中,当系统容量小于300Mv时,偏差值可以放宽到±0.5Hz。
3.供电可靠率
供电可靠率是指供电企业某一统计期内对用户停电的时间和次数,直接反映供电企业的持续供电能力。
供电可靠率反映了电力工业对国民经济电能需求的满足程度,已经成为衡量一个国家经济发达程度的标准之一;供电可靠性可以用如下一系列年指标加以衡量:供电可靠率、用户平均停电时间、用户平均停电次数、用户平均故障停电次数等。
国家规定的城市供电可靠率是99.96/100。即用户年平均停电时间不超过3.5小时;
我国供电可靠率目前一般城市地区达到了3个9(即99.9%)以上,用户年平均停电时间不超过9小时;重要城市中心地区达到了4个9
(即99.99%)以上,用户年平均停电时间不超过53分钟。
计算公式
供电可靠率(%)=8760(年供电小时)-年停电小时/8760最后乘以100%
用电负荷分类
用电负荷:用户的用电设备在某一时刻实际取用的功率的总和。
电力负荷分类的方法比较多,最有意义的是按电力系统中负荷发生的时间对负荷分类和根据突然中断供电所造成的损失程度分类。
按时间对负荷分类
1、高峰负荷:是指电网或用户在一天时间内所发生的最大负荷值。一般选一天24小时中最高的一个小时的平均负荷为最高负荷,通常还有1个月的日高峰负荷、一年的月高峰负荷等。
2、最低负荷:是指电网或用户在一天24小时内发生的用电量最低的负荷。 通常还有1个月的日最低负荷、一年的月最低负荷等。
3、平均负荷:是指电网或用户在某一段确定时间阶段内的平均小时用电量。
按中断供电造成的损失程度分类
1、一级负荷:突然停电将造成人身伤亡或引起对周围环境的严重污染,造成经济上的巨大损失,如重要的大型设备损坏,重要产品或重要原料生产的产品大量报废,连续生产过程被打乱,需要很长时间才能恢复生产;以及突然停电会造成社会秩序严重混乱或在政治上造成重大不良影响,如重要交通和通信枢纽、国际社交场所等的用电负荷。
2、二级负荷:突然停电将在经济上造成较大损失,如生产的主要设备损坏,产品大量报废或减产,连续生产过程需较长时间才能恢复;以及突然停电会造成社会秩序混乱或在政治上造成较大影响,如交通和通信枢纽、城市主要水源,广播电视、商贸中心等的用电负荷。
3、三级负荷:不属于一级和二级负荷者。
六、变电所
变电所是联接电力系统的中间环节,用以汇集电源,升降电压和分配电力。
变电所的主接线
变电所的主接线是电气设备的主体,由其把发电机、变压器、断路器、隔离开关等电气设备通过母线、导线有机的连接起来,并配置各种互感器、避雷器等保护测量电器,构成汇集和分配电能的系统。
变电所主接线的形式与变电所设备的选择、布置、运行的可靠性和经济性以及继电保护的配置都有密切的关系,它是变电所设计的重要环节。在拟定变电所主接线方案时,应满足可靠、简单、安全、运行灵活、经济合理、操作维护方便和适应发展等基本要求。
七、电源
电源主要由发电机产生,目前世界上的发电方式主要有火力发电、水力发电和核电。其它小容量的有风能、地热能、太阳能、潮汐等。
1、火电:利用煤、石油和天然气等化石燃料所含能量发电的方式统称为火力发电。
按发电方式,火力发电分为燃煤汽轮机发电、燃油汽轮机发电、燃气——蒸汽联合循环发电和内燃机发电等。
火力发电厂简称火电厂,是利用煤、石油、天然气或其他燃料的化学能生产电能的工厂。火电厂主要组成为:
(1)、锅炉及附属设备,确保燃料的化学能转化为热能。
(2)、汽轮机及附属设备,确保热能变为机械能。
(3)、发电机及励磁机,确保机械能变为电能。
(4)、主变压器,把电能提升为高压电输送给输电线路。
火力发电的优势是:早期建设成本低,发电量稳定,一年四季均匀生产,所以在世界各国的电力生产中都占主要地位,一般在70%左右。
火力发电的缺点是:所用的煤、油、气等是不可再生资源,虽然储量多,始终会枯竭,污染严重。
一方面是煤炭资源丰富,二一方面是其它资源转换为油、气、化学能等成本高,我们国家火电是以煤电为主,油、气、化学能等火电是限制性的计划性发展。
2、水电:水力发电是利用循环的水资源进行,主要利用阶梯交接、河流落差大的优势,以产生强大的水能动力,用于发电,属于生态环保发电类型。
水电最大的优势是:环保、发电成本低、调峰能力强(可以根据负荷随时调整发电量)。
水力发电的缺点是前期建设成本高、时间长,年发电量不均匀,所以一般水电发电量只能占总量的30%左右及以下。
水力发电厂根据水力枢纽布置不同,主要可分为堤坝式、引水式、混合式等。主要由挡水建筑物(大坝)、泄洪建筑物(溢洪道或闸)、引水建筑物(引水渠或隧洞,包括调压井)及电站厂房(包括尾水渠、升压站)四大部分组成。
3、核电:核电站只需消耗很少的核燃料,就可以产生大量的电能,每千瓦时电能的成本比火电站要低20%以上。核电站还可以大大减少燃料的运输量。例如,一座100万千瓦的火电站每年耗煤三四百万吨,而相同功率的核电站每年仅需铀燃料三四十吨,运输量相差1万倍。
核电的另一个优势是干净、无污染,几乎是零排放。用核电取代火电,是世界发展的大趋势。核电的缺点是早期建设成本高,技术要求高,平时故障少,一旦发生大故障(如核泄漏),将是毁灭性的大灾难。
从1954年前苏联建成世界上第一座试验核电站、1957年美国建成世界上第一座商用核电站开始,核电产业已经过了几十年的发展,装机容量和发电量稳步提高。截止到2004年底,全世界有31个国家已经建成或正在建造核电机组,其中正在运行的核电机组440台,在建机组26
台。2004年世界核发电量26186亿千瓦时,占世界总发电量的16%。各国由于情况不同,核发电量占各自总发电量的比重相差较大:其中法国最大为78.1%,韩国38%,美国19.9%,日本29.3%,英国19.4%,日本29.3%,印度2.8%。
一是核心技术方面方面的问题(容易受外国控制),二是核泄漏的方面的问题,中国对核发电一直是走保守的限制性发展道路,按照规划,即使到2020年,中国的核发电最多也只占总量的40/0。
4、风电的优势是环保,缺点是占地面积大,发电不稳定,不能建大中型发电厂,所以风力发电发展非常迟缓,到现在全国装机容量不到50万千瓦,最大发电机组仅750千瓦。
5、从从太阳能获得电力,需通过太阳能电池进行光电变换来实现。它同以往其他电源发电原理完全不同,具有以下特点:优点:无枯竭危险;安全可靠,无噪声,无污染排放外,绝对干净;不受资源分布地域的限制,可利用建筑屋面的优势;例如,无电地区,以及地形复杂地区;无需消耗燃料和架设输电线路即可就地发电供电;能源质量高;使用者从感情上容易接受;建设周期短,获取能源花费的时间短。
缺点:太阳能电池板的生产却具有高污染、高能耗的特点,照射的能量分布密度小,即要占用巨大面积;获得的能源同四季、昼夜及阴晴等气象条件有关;目前相对于火力发电,发电机会成本高;光伏板制造过程中不环保。
最后就是所说的地热能和潮汐能这两类发电目前大都还处于实验性质,并未全面的进行建设。
八、新中国的电力发展
中国电力工业自1882年在上海诞生以来,经历了艰难曲折、发展缓慢的67年,到1949年发电装机容量和发电量仅为185万千瓦和43亿千瓦时,分别居世界第21位和第25位。1949年以后我国的电力工业得到了快速发展。1978年发电装机容量达到5712万千瓦,发电量达到2566亿千瓦时,分别跃居世界第8位和第7位。改革开放之后,电力工业体制不断改革,在实行多家办电、积极合理利用外资和多渠道资金,运用多种电价和鼓励竞争等有效政策的激励下,电力工业发展迅速,在发展规模、建设速度和技术水平上不断刷新纪录、跨上新的台阶。装机先后超过法国、英国、加拿大、德国、俄罗斯和日本,从1996年底开始一直稳居世界第2位。进入新世纪,我国的电力工业发展遇到了前所未有的机遇,呈现出快速发展的态势。
一、发电装机容量、发电量持续增长:“十一五”期间,我国发电装机和发电量年均增长率分别为10.5%、10.34%。发电装机容量继2000年达到了3亿千瓦后,到2009年已将达到8.6亿千瓦。发电量在2000年达到了1.37万亿千瓦时,到2009年达到34334亿千瓦时,其中火电占到总发电量的82.6%。水电装机占总装机容量的24.5%,核电发电量占全部发电量的2.3%,可再生能源主要是风电和太阳能发电,总量微乎其微;
二、电源结构不断调整和技术升级受到重视。水电开发力度加大,2008年9月,三峡电站机组增加到三十四台,总装机容量达到为二千二百五十万千瓦。核电建设取得进展,经过20年的努力,建成以秦山、大亚湾/岭澳、田湾为代表的三个核电基地, 截至2008年底,国内已投入运营的机组共11台,占世界在役核电机组数的2.4%,装机容量约910万千瓦,为全国电力装机总量的1.14%、世界在役核电装机总量的2.3%。高参数、大容量机组比重有所增加,截止2009年底,全国已投运百万千瓦超超临界机组21台,是世界上拥有百万千瓦超超临界机组最多的国家;30万千瓦及以上火电机组占全部火电机组的比重提高到69.43%,火电机组平均单机容量已经提高到2009年的10.31万千瓦。在6000千瓦及以上电厂火电装机容量中,供热机组容量比重为22.42%,比上年提高了3个百分点。