当前位置: 电力网 » 核电 » 正文

如何论证和确保内陆核电安全?核能协会逐条回应质疑(2)

日期:2016-03-07    来源:能见度  作者:赵成昆 周如明 毛亚蔚 翁明辉

国际电力网

2016
03/07
18:03
文章二维码

手机扫码看资讯

关键词: 内陆核电 核安全 核电建设

3.关于AP1000设计的安全标准

《十问》中的第3个问题是:“‘均按AP1000设计’的我国内陆核电站连美国的安全标准都达不到,何以是‘全球最高安全标准’呢?”    

对于王亦楠质疑的AP1000安全标准,可以给出以下分析:

(1)AP1000有完善的严重事故预防和缓解措施

AP1000采用先进的第三代压水堆技术,有完善的严重事故预防和缓解措施,可以确保实现控制反应性、排除堆芯热量和包容放射性物质的安全功能。这些措施包括:通过堆芯和蒸汽发生器设计,增大安全裕度;增大稳压器设计容积,提高安全裕度,顶部设有自动泄压系统,可以防止高压熔堆;采用LBB(先漏后破)技术防止管道大破口失水;采用全数字化仪控系统,减少人为事故;设置非能动的安全系统,确保堆芯应急冷却和安全壳热量导出;安全壳内设置氢气监测系统和非能动的氢气复合器和氢点火器,防止发生氢气爆燃或爆炸;针对严重事故的堆芯熔融物,进行压力壳非能动冷却的设计,从而实现严重事故工况下堆芯熔融物的堆内滞留,防止发生安全壳底板融穿等等,当然还包括前面提到的防止大型商用飞机的恶意撞击。

上述AP1000严重事故预防和缓解措施的设计均符合美国相应CFR(联邦法规)的要求,并已通过美国NRC的审查。

(2)AP1000 DCD的升版与实施情况

DCD是设计控制文件的简称,是美国核电供应商按照NRC要求编制、提交的申请核电厂设计许可证的文件。按照美国联邦法规10CFR52和NRC文件规定,DCD得到设计许可(DC)后也可以修改升版,修改的内容包括:核电设计的优化和标准化,以及按照政府新法规的强制性要求所进行的修改。

NRC经过历时5年的独立审查、安全分析和试验验证后,于2005年12月对于西屋公司的AP1000 DCD第15版颁发了设计许可证。这也是三门、海阳核电依托项目合同签订时的有效版本。

美国西屋公司在取得设计许可证后,继续对AP1000的设计进行优化和标准化。其中,钢制安全壳外面屏蔽构筑物的设计修改,是DCD升版中一项最为重要的改进,旨在能抗大型商用飞机撞击。在这些修改过程中,产生了过渡版本DCD16版、DCD17版、DCD18版,这3个版本并不具有法律效用。至2011年9月,美国NRC正式批准了AP1000的DCD19版,成为有法律效力的版本。

我国企业与西屋公司签订的技术转让合同中约定,AP1000的任何设计优化和修改成果,中方都有权得到。西屋公司在技术转让过程中兑现了承诺,向中方反馈了DCD升版的全部设计优化信息。目前,DCD19版绝大多数的设计修改已经在依托项目4台机组建设中得到应用,除软土地基(不适用)以及大型商用飞机恶意撞击的设计修改外。

湘鄂赣3个内陆核电厂采用的AP1000设计,与美国本土正在建设的4个AP1000核电机组,是同等安全的,没有本质区别,符合国际最高安全标准。

4.关于AP1000核心设备的可靠性

《十问》中的第4个问题是:“AP1000主回路的核心设备(屏蔽电机泵、爆破阀等)毫无核电厂实际运行经验,至今主泵还在试制中,连可靠性数据库都谈不上,又是如何得出‘AP1000的事故概率已经低到10-7’、‘60年免维修’的?”

我们也和王亦楠研究员一样,十分关注AP1000屏蔽泵的制造质量。实际上,关注内陆核电建设的企业、工程技术人员以及社会公众,都十分关注这个问题。因此,相关企业与监管部门应提高与AP1000核心设备制造质量有关信息的透明度,以回答社会各方的关切。

反应堆冷却剂屏蔽主泵是AP1000机组的核心设备之一,与安全及电厂可利用率有关。虽然美国以前在屏蔽泵的设计制造及使用方面积累了大量经验,但用于AP1000这一类屏蔽泵尚属首次,技术复杂,要求高,先后经历了七年的制造和验证过程,这也可视为一种创新技术得到验证必须经历的艰苦过程。目前,屏蔽主泵已按技术规格书要求完成全部出厂前试验。

2015年10月29日,国家核安全局组织核安全专家委员会对AP1000主泵的设计、制造、试验验证结果、研制过程中出现问题的处理情况进行了综合审查。审查结论是,AP1000主泵性能满足技术规格书要求。目前,AP1000依托项目首台机组的4台主泵已发运至国内开始安装调试。

5.关于概率论方法在安全评价中的应用

《十问》中的第5个问题是:“国际核电界已认识到‘概率安全评价方法不宜单独用于确定性决策判断’,为何国内还有机构基于‘主观概率’就断定‘内陆核电是安全的’?”这个问题涉及“确定性安全评价”和“概率论安全评价”的基本概念以及概率论方法在安全评价中的实际应用。

(1)“确定性安全评价”和“概率论安全评价”的基本概念。

实际上,美国在发展核电之初,就意识到像世界上所有事物一样,核电是具有风险的。为了评估核电风险能否承受,美国原子能委员会委托布鲁海文国家实验室完成了一个研究报告,并在1957年发表(WASH-740)。该报告估计,一次“最大可信事故”的发生将可能导致可能人员伤亡数和财产损失,发生的可能性是每十万到一百万堆年一次。

但由于当时有关试验、数据和方法论的缺乏,WASH-740所采用的模型非常粗糙,结果也缺乏足够的可信度,于是美国原子能委员会(NRC前身)将重点转到了一个个具体问题的处理,如可信事故、安全壳设计、事故源项、应急堆芯冷却系统的设计、安全系统设计的冗余、抗震设计、安全设备的“质量保证”等方面,这些方面具体要求的综合被称之为“确定论安全要求”(Deterministic Safety Approach)。

需要了解的是,核安全领域的确定论安全要求并不像许多其他理论,如欧基里德的几何学,由几个公理,通过一套逻辑学推理,得出一套逻辑自恰的体系,而像确定论安全要求的创建者美国人所说,是一个“打补丁”(patch work)的工作。特别是,确定论安全要求不能将风险定量化,所以无法回答“多安全是足够的?”(How safe is safe enough?)这个基本安全命题。

后期的概率安全评价方法表明,确定论安全要求为核电厂安全提供了足够保证,但其本身也存在要求不平衡,特别是不能处理多重失效的缺陷。所以自上世纪80年代开始,国际上确定了“确定论安全要求为主,概率论安全要求为辅”的理念,即在满足确定论安全要求的同时,使用概率安全评价方法寻找出核电厂安全的薄弱环节来加以改进,进一步提高核电厂的安全水平。

(2)概率安全评价技术的实际应用

自上世纪90年代开始,随着概率安全评价技术的发展和日益成熟,美国人开始建立“风险告知和基于性能”(risk-informed and performance-based)的安全要求,也就是用概率风险的观点来调整某些不合理的确定论安全要求。但迄今为止,不管美国、中国,以及欧洲等其他一些国家,确定论安全要求仍然是必须满足并作为颁发核设施许可证基础的,并不存在所谓“基于‘主观概率’就断定‘内陆核电是安全的’”问题。

目前对核电厂熔堆或大规模放射性释放的概率评估并不完全是主观概率,因为在评估过程中所使用的设备失效数据可以通过大量的工业经验获得或验证,同时在使用这些统计数据时,也会评估其不确定性,对具体设施同时可采用贝叶斯分析等方法来修正。当然某些核电供货商或核电公司为了商业目的,可能会宣传某些极端的结果,但任何一个国家的核安全当局在使用概率风险分析的结果时,都会对不确定性、置信区间等给出评估,科学、合理地使用概率风险分析的结果。

6.关于内陆核电厂址的大气弥散条件

《十问》中的第6个问题是:“我国大部分内陆核电厂址是与欧美迥异的小静风天气,完全超出了美国‘高斯烟羽模型’的适用范围,为何还套用此工具评估对大气环境的影响、又是如何得出‘符合排放标准’结论?”在这个问题中,王亦楠研究员还耸人听闻地提出低风速“容易形成‘核雾霾’”的见解。因此,需要对于这个问题加以澄清。

(1)影响大气弥散条件的因素

通常,气载放射性羽流在大气中的弥散包括风的传输作用和大气湍流的扩散作用,而大气湍流的扩散作用要考虑垂直向和水平向(侧风向)的湍流作用。低风速条件下风的纵向传输作用会减弱,但低风速条件下的侧风向摆动效应会显著加大放射性羽流在侧风向上的散布,从而可以明显减小地面浓度。

高斯模式是以帕斯奎尔稳定度分类为基础的,基本的特点是湍流随稳定度增加而减小。然而,在低风速条件下,风向摆动效应使得侧向扩散能力随着稳定度的增加不降反增,使小风情况下的地面浓度值往往较小,而这正是多数常规高斯烟流模式不能正确模拟这类情况的原因之一。

(2)低风速条件下大气弥散条件的研究结论

在美国,为了更好地了解低风速风摆效应对大气弥散的影响,上世纪70年代由NRC赞助和发起,开展了一系列低风速条件下的野外示踪物试验。NRC根据这些试验和其它一些野外试验的结果,得到了考虑侧向风摆的一组水平横向扩散参数的经验修正因子,并在NRC的管理导则RG1.145中给出。根据RG1.145的要求,水平横向扩散参数先通过标准的Pasquill方法计算,然后乘以修正因子M。M的取值在2-6之间,可以认为,NRC在管理导则RG1.145中引入M修正因子,表示不考虑风摆效应的高斯烟流模式,在低风速下会高估实际地面浓度2-6倍。

对于我国部分内陆核电厂址可能相对较多出现低风速条件的情况,已经有设计研究单位在湖北咸宁核电厂和湖南桃花江核电厂址进行了现场大气弥散条件试验研究,包括SF6示踪试验以及精细模式应用(三维诊断风场模式,蒙特卡罗数值扩散模式或三维拉格朗日高斯烟团模式)。这两项试验研究中均观测到低风速条件下有明显的风向摆动现象,而这使得气载放射性羽流的水平扩散范围显著增大,从而使地面浓度明显降低。

咸宁核电厂和桃花江核电厂的现场大气试验指出,采用精细的大气弥散模式(蒙特卡罗数值扩散模式,三维拉格朗日高斯烟团模式)可以较现实地模拟低风速情况下的大气弥散条件,但这些模式的应用,需要实施较为庞大和精细的现场气象观测计划。相比之下,高斯直线烟流模式只需要有限的气象测量,由于其给出的估算结果是保守的,因此,在厂址评估和气态途径辐射环境影响估算中是可用的。

(3)不要用“核雾霾”来误导公众

何祚庥院士和王亦楠研究员在《湘鄂赣三省发展核电的安全风险不容低估》(2015年3月9日)一文中称:“核电厂年平均风速越高,静风频率越低,大气弥散条件越好,越有利于放射性气载污染物扩散,核电站正常运行时对周围公众的辐射影响越小。反之,则产生微米级‘放射性气溶胶’颗粒,形成‘核雾霾’。”

我们认为,何院士和王研究员关于低风速条件会产生微米级“放射性气溶胶”颗粒并形成“核雾霾”的推断是主观的,反映了他们对于核电设计缺乏了解。

实际上,在反应堆运行过程中,主冷却剂系统中极少量的腐蚀产物与固态裂变产物会随着系统的泄漏,在核岛厂房内部形成气溶胶,放射性废气处理系统以及通风系统的设计使得厂房空气排入外部环境前能够有效地净化处理这部分气载污染物,不会对环境造成不利影响,更不可能随风速条件形成所谓的“核雾霾”。

7.关于内陆核电厂散热系统运行的热影响

《十问》中的第7个问题是:“湘鄂赣核电站装机容量之高没有国际先例可循,巨量废热排放将对局地气候产生什么影响?”

何祚庥院士和王亦楠研究员在《湘鄂赣三省发展核电的安全风险不容低估》(2015年3月9日)一文中认为:“核电的热污染比火电严重得多,发达国家已注意到内陆核电对气候变化呈干旱趋势的区域造成很大负面影响。”王亦楠研究员在《十问》中进一步提出,“每个内陆核电站每天向空中排放2000亿大卡废热,这一史无前例且几乎贯穿全年的巨量热污染对长江流域旱情的加重不容忽视。”对于这个问题,我们的看法如下。

核电厂的散热系统由循环冷却方式确定,我国内陆核电厂均考虑采用二次循环冷却系统。在采用二次循环冷却系统的情况下,电厂的散热系统(冷却塔)将绝大部分乏热散入大气,只有极少部分乏热通过冷却塔排污水带入受纳水体,这与火电厂大同小异。

我国还没有内陆核电厂,但我们可以借用美国的相关评价资料。NRC分别在1996年和2009年对美国运行核电厂的环境问题进行总体评估。在这两次环境问题识别中,均未提出冷却塔散热系统运行会加重流域旱情的问题,但均包括冷却塔运行产生的盐雾漂滴、结冰、起雾或湿度变化等所致的影响。NRC的评估意见指出,核电厂冷却塔散热系统对于局地气候的影响是小尺度的(几km以内),并且指出对于局地气候的影响均在各局地气候参数的年际变化范围内。

此外,按国家能源局统计,2014年我国火电装机容量超过9亿千瓦(电)。我们没有确切数据指出其中有多少分布在长江流域(应该是一个不小的份额),但至今也未见有人提出这些火电厂运行会加重流域干旱的问题。

8.严重事故工况下确保水资源安全的应急预案

《十问》中的第8个问题是:“何以做到‘最严重事故工况下核污水可封堵、可贮存、可控制,最多只有4800~7000立方米且都被控制在安全壳内’?”在这个问题中,王亦楠研究员询问:“为何没有‘事故情况下放射性气体通过降雨流入江河湖泊’的应急预案?福岛核电站至今也控制不住核污水以每天400吨的速度增长,场区50多万吨核污水早已堆满为患,不得不排向大海;……我国内陆核电安全论证严重低估了核事故的复杂性:既没有可信可靠的技术措施证明核污水如何‘封堵控’,也没考虑‘放射性气体逸出厂区、通过雨水进入地下和江河湖泊’的应急预案。”

对于这个问题,我们有以下的分析。

(1)日本福岛核事故产生大量放射性污水的原因

首先,福岛核事故过程中,由于超设计基准地震和海啸导致长时间全厂停电,进而造成堆芯损毁和安全壳厂房失效,1-3号机组未能实现堆芯闭式循环冷却,直至2011年6月,放射性污水处理设施投入运行,经过处理的废水用于1-3号机组的堆芯冷却,才逐渐实现了闭式循环冷却。根据东京电力公司报道的资料推算,在放射性污水处理设施投入前的高放射性污水量大约在14万m3左右。福岛核事故中产生了较多数量的放射性污水,这凸显了严重事故工况下在安全壳内实现堆芯闭式循环冷却的重要性。

其次,日本福岛第一核电厂的反应堆厂房和汽机厂房处在地下水排泄路径上,这些厂房虽然坐落在低渗透性的隔水层上,但厂房四周是含水层。事故前电厂设置有地下水疏水系统。然而,地震使反应堆厂房、汽机厂房以及周围的地下水疏水系统遭到损坏,来自靠山侧的地下水可以通过含水层流入损坏的厂房(每天约400 m3)。地下水进入厂房,就与厂房内已有的污染水混合。为避免厂房内的放射性污水流出,东京电力公司保持厂房内的水位略低于厂房外的地下水位,因此,每天从反应堆和汽机厂房内抽出约800 m3的高放射性污染水。这些水除盐后,进行过滤除铯。其中,大约400 m3的水复用于堆芯冷却,其余部分贮存在专用的贮罐内。这就是福岛核事故现场贮存的放射性污水量不断增加的原因。目前,东京电力公司与日本政府共同采取的多重措施(用硅酸钠降低厂房周围土壤渗透性,建立地下水旁路系统,厂房四周建冷冻防渗墙等)已经实施生效,大量地下水进入损坏厂房的局面已得到控制。

(2)我国内陆核电厂址的安全性

日本福岛核事故由超设计基准地震和海啸事件引发,我们认为,这样的灾难性事件在我国内陆核电厂是极不可能发生的。

在地震安全方面,2011年3月11日发生的日本东北大地震的震级达到9.0级,是世界上有记录历史以来的第5大地震。这次地震发生在太平洋板块和欧亚大陆板块碰撞的板块俯冲带。我国属于欧亚大陆板块,大地构造上属于板块内部地区。主要的破坏性地震活动为大陆板块内部及地壳内部的浅源地震,这类地震与板块俯冲带产生的地震相比,释放的能量要小很多。

与其他的外部自然事件一样,我国核电厂厂址设计基准地震的确定,采用了国际上最严格的标准。到目前为止,我国各拟建内陆核电项目的建设单位均十分注意将核电厂址选择在地震活动性水平较低的地区,设计基准地面地震动参数(SL-2)值低于0.2g,而我们设计采用的为0.3g,有很大裕量。

我国内陆核电厂的防洪设计采用国际上最严格标准,设计基准洪水位确定时考虑各种洪水事件组合,选取其中最大的洪水位来确定厂址的设计基准洪水位。各拟建内陆核电厂址按照洪水事件组合确定设计基准洪水位后,在确定厂坪标高时均采用了“干厂址”的理念,并留有很大的安全裕度,可以确保免受洪水危害。

(3)我国内陆核电厂与放射性污水有关的事故场景分析

我国内陆核电厂采用第三代核电技术,目前可供选择的堆型有AP1000和“华龙一号”。大量的安全论证结果表明,由于这些堆型采取了较为完善的严重事故预防和缓解措施,已经可以实现从设计上消除大量放射性物质释放的可能性。退一万步说,即使发生严重事故工况,安全壳内也可实现堆芯的闭式循环冷却,不会造成大量放射性污水泄漏到环境,环境安全是有保障的。

在实现堆芯闭式循环冷却的场景下,以AP1000机组为例,堆内可能产生的放射性污水量在3800m³的水平。进一步考虑发生极不可能的安全壳少量泄漏情况,应急补水量可能达到20m³/h的水平。由于AP1000机组具有各种缓解措施,可以在几天内恢复安全壳闭式循环冷却。如考虑3天的应急补水,则最终需要处理的总水量为5300 m³;如考虑7天的应急补水,则最终需要处理的总水量为7200m³。这些水量可以贮存在反应堆和核辅助厂房的自由空间内。

我国内陆核电厂,即使考虑了短时间内非闭式循环冷却的极端事故场景,所产生的放射性污水量将在几千m3的水平,远低于福岛核事故产生的放射性污水量。产生这种差别的原因在于我国内陆核电厂采用的压水堆核电厂设计与日本福岛第一核电厂所采用的沸水堆核电厂显著不同。例如,福岛第一核电厂采用Mark I型和Mark II型抑压式安全壳,自由体积分别仅为4280m3和4420m3。在这种安全壳设计中,考虑采用抑压池泄压,但福岛核事故中因长时间失电,通向抑压池的阀门失效,较小的安全壳容积导致其在严重事故工况下失效。我国内陆核电厂采用的压水堆机型具有“大干式”安全壳(AP1000和“华龙一号”安全壳的自由体积分别为58000m3和89000m3),巨大的体积使得其在严重事故工况下具有很好的滞留能力和防氢爆能力。

(4)严重事故工况下环境风险可控

国际核能界在总结福岛核事故教训中均未提出内陆核电厂有危及水资源安全的风险,这表明内陆核电厂对水资源安全的风险属于比各种可信严重事故风险更低的剩余风险。对于核电厂的剩余风险,国际核能界不再在法规、标准中要求设防。

考虑到我国社会公众的关切,内陆核电厂将制定严重事故工况下确保水资源安全的应急预案,确保实现环境风险可控。应急预案中考虑一系列措施,包括:利用安全厂房贮存放射性污水,并配备多台大容量的排放贮罐,作为废液贮存能力的补充或后备;核电厂配备有阻水剂,以在紧急情况下用于泄漏放射性污水的封堵;核电厂地基及基础采用防泄漏设计,进出安全壳的管道均设置双重阀门隔离,并备有放射性污染物抑制剂、沸石过滤装置等,以实现放射性污水与地表水体间的实体隔离;厂区预留空间,以备在紧急情况下安装移动式应急废液处理装置。通过这些措施,即使在极端情况下,亦能确保放射性污水得到贮存、封堵、隔离和处理。

返回 国际电力网 首页

能源资讯一手掌握,关注 "国际能源网" 微信公众号

看资讯 / 读政策 / 找项目 / 推品牌 / 卖产品 / 招投标 / 招代理 / 发文章

扫码关注

0条 [查看全部]   相关评论

国际能源网站群

国际能源网 国际新能源网 国际太阳能光伏网 国际电力网 国际风电网 国际储能网 国际氢能网 国际充换电网 国际节能环保网 国际煤炭网 国际石油网 国际燃气网